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1.0 Introduction 

1.1 BACKGROUND 

The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry 
and academic institutions that will develop and deploy state-of-the-art computational modeling and 
simulation tools to accelerate the commercialization of carbon capture technologies from discovery to 
development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The 
CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically 
validated models with uncertainty quantification, optimization, risk analysis and decision making 
capabilities. The CCSI Toolset will incorporate commercial and open-source software currently in use by 
industry and will also develop new software tools as necessary to fill technology gaps identified during 
execution of the project. The CCSI Toolset will (1) enable promising concepts to be more quickly 
identified through rapid computational screening of devices and processes; (2) reduce the time to design 
and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from 
laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some 
of the physical operational tests with virtual power plant simulations.  

The goal of CCSI is to deliver a toolset that can simulate the scale-up of a broad set of new carbon 
capture technologies from laboratory scale to full commercial scale. To provide a framework around 
which the toolset can be developed and demonstrated, we will focus on three Industrial Challenge 
Problems (ICPs) related to carbon capture technologies relevant to U.S. pulverized coal (PC) power 
plants. Post combustion capture by solid sorbents is the technology focus of the initial ICP (referred to as 
ICP A). 

The goal of the uncertainty quantification (UQ) task (Task 6) is to provide a set of capabilities to the user 
community for the quantification of uncertainties associated with the carbon capture processes. As such, 
we will develop, as needed and beyond existing capabilities, a suite of robust and efficient computational 
tools for UQ to be integrated into a CCSI UQ software framework. 

1.2 UNCERTAINTY QUANTIFICATION TASK 

The approach of the UQ team will be to leverage, as much as possible, existing state-of-the-art tools to 
provide UQ capabilities for the suite of simulation tools. Some of these tools are available at the DOE 
National Laboratories and they include, for example, the DAKOTA framework from Sandia National 
Laboratories, the PSUADE toolset and UQ Pipeline from Lawrence Livermore National Laboratory, the 
UQ toolsets from Los Alamos National Laboratory and Pacific Northwest National Laboratories, and 
other tools available from the UQ community. These frameworks provide various UQ tools such as 
sampling methods, statistical analysis methods, global optimization routines, response surface methods, 
and workflow management capability to launch and monitor the large ensembles of calculations used in a 
statistical evaluation of uncertainty.  In cases where existing tools do not provide appropriate capabilities 
(to be anticipated when we move toward physics-based full scale models), we will identify the gaps and 
develop new UQ approaches. The result will be an end-to-end UQ engine (integrated framework) for 
CCSI that allows full UQ studies which is equipped with (a) a variety of adaptive sampling 
methodologies populating high dimensional uncertainty spaces, (b) the capability to launch and monitor a 
large ensemble of calculations, and (c) the functionality to collect and analyze the output data. 

Specific activities for year 1 (through 1/31/2012) for Task 6 include the following: 

6.1 Survey and evaluate UQ methodologies for Carbon Capture process simulators 
6.1.1 Compile CCSI process model characteristics  
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6.1.2 Compile relevant UQ methodologies and methods 
6.1.3 Compile existing UQ tools 
6.1.4 Document results from each 6.1 subtasks 

6.2 Demonstrate UQ methodology on MEA simulations. 
6.2.1 Define UQ objective and available experimental data for MEA 
6.2.2 Identify parameters and probability distributions in MEA 
6.2.3 Define/implement UQ framework for MEA  
6.2.4 Perform UQ studies on MEA    
6.2.5 Release UQ framework (version 1) and complete report  

This report documents progress on Task 6.2 through the end of January 2012. 
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2.0 UQ Tool’s Capabilities 
To perform uncertainty quantification on a model simulating some physical phenomenon, we follow a 
few key steps: 

1) Identify dominant sources of uncertainties including observation data; 

2) Characterize the selected sources of uncertainties; 

3) Propagate the uncertainties through the model via sampling; and 

4) Analyze simulation results to assess uncertainties and sensitivities. 

Step (1) involves frequent dialog with subject matter experts (SMEs). For example, in the UQ study of the 
CCSI MEA model, the UQ team had many sessions with the process design/synthesis team to identify 
sources of uncertainty that the process designers deemed significant. Our initial focus on the UQ method 
development is to support uncertainties that can be described by continuous uncertain parameters. Once 
these uncertain parameters have been identified, Step (2) also involves conversing with SMEs or 
searching through the literature in order to prescribe ranges (in the form of lower and upper bounds) and 
probability distributions (e.g. normal, uniform, etc.) for these parameters. UQ methods/tools are needed 
for Steps (3) and (4). A simple workflow for Steps (3) and (4) is depicted in Figure 2-1. 

 

Figure 2-1: Simple workflow for UQ analysis 

If the number of input parameters is greater than ten, then it is advisable to apply parameter screening to 
perform variable selection (to derive smaller subset of “important” input parameters). Once the number of 
input parameters is more manageable, one can perform response surface analysis to approximate the 
functional relationship between the input samples and the output samples. If observational data exists for 
the output parameters, then one could perform Bayesian inference (also known as data fusion, parameter 
estimation, or inverse UQ) to refine the estimates of the input uncertainties (which may prompt the 
generation of new samples or filtering of old samples based on the new input uncertainties). Finally, when 
an adequate characterization of the input uncertainties (in the form of parameter distributions) and the 
input-to-output mapping (in the form of a validated response surface model) is obtained, then one may 
proceed with uncertainty analysis, sensitivity analysis, reliability analysis, etc. 
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In order to support this workflow, we have developed a graphical user interface (GUI) coupled to the 
PSUADE UQ software. This integrated UQ engine currently has the following capabilities: 

Sample generation: The user specifies a sample size and a sampling scheme. Once specified, the GUI 
will generate a sample (consisting a number of sample points), then invoke the Aspen Plus client software 
(developed by Element 5) to evaluate the sample, which would then serve as data to subsequent UQ 
analyses. Several sampling schemes such as Monte Carlo (MC), Quasi-Monte Carlo (QMC), Latin 
Hypercube (LH), Orthogonal Array (OA), and the Morris design are currently available through the GUI. 
The choice of sampling method depends on which analysis is performed. For example, for parameter 
screening, the Morris or LH designs are recommended. For uncertainty assessment of inexpensive 
simulations, QMC or LH designs are preferred over MC. For response surface analysis, space-filling 
designs such as LH, OA or QMC are useful.  

Forward uncertainty analysis: The tool will compute the probability distribution of one single output 
variable and display its sufficient statistics, such as mean, standard deviation, skewness and kurtosis. The 
distributions will also be displayed graphically. 

Inverse UQ (or Bayesian inference): For each output variable, the user specifies an observed value 
(from physical experiments) with the associated uncertainties (in the form of standard deviation). The tool 
will launch the Markov Chain Monte Carlo (MCMC) algorithm to compute the posteriors distributions 
(prior distributions integrated with data) of the uncertain parameters. The distributions will also be 
displayed graphically. 

Response surface model analysis: The user selects a single output and also a response surface fitting 
scheme. The tool will use the data (i.e., input-output samples) to “fit” a response surface scheme that 
approximates the inputs-to-output relationship. The model will be cross-validated to derive its errors (i.e., 
deviations from the model’s predicted values against the true values). The tool will plot a histogram of the 
errors as well as a plot of predicted data vs. actual data, in which a diagonal plot (for example, see right 
side of Figure 3-11) signifies an adequate combination of the sample and the selected fitting scheme. 
Once a response surface is generated, the tool also provides ways to visualize the response surface. 
Current version of our UQ tool provides a few fitting schemes such as polynomial regression and splines. 
Future versions will add more schemes. 

Forward uncertainty analysis using response surface model: In case the current sample is not large 
enough to give meaningful statistics, the sample can be used to create a response surface, which can be 
evaluated to efficiently generate a much larger sample, in order to derive an improved estimate of the 
statistics.  

Sample refinement via adaptive sampling: After a sample has been generated, evaluated, and fitted via 
response surface analysis, the user may find that the sample is not sufficiently large to give an accurate 
enough fit. Under this circumstance, more sample points may be added to the existing sample. Current 
version of the tool provides crude capabilities for adaptive sampling refinements. There are two methods 
to add more samples to the existing ensemble. One is uniform refinement, which doubles the sample size 
by adding sample points uniformly in the parameter space. The other is adaptive refinement, which will 
generate a new sample via the METIS sampling scheme. Using this METIS sample, additional sample 
points will be derived from regions in the uncertain parameter space that corresponds to high variability in 
the output space. The adaptive refinement method iterates between adding new sample points and 
evaluating them via simulation. The “appended” sample can be analyzed again using response surface 
analysis tools to evaluate its adequacy for model fitting. 

Variance-based sensitivity analysis: Given a user-specified output, the tool will determine each 
uncertain variable’s contribution to the total variance of the output. The result is displayed as a pie chart 
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for clarity. Current version supports first-order sensitivity only. Higher-order sensitivity analysis will be 
provided in the next version. 

Parameter screening: This capability is equivalent to variable selection. In the current version, only the 
Morris method is supported (thus the sample needs to be generated using the Morris sampling scheme). 
This is a qualitative sensitivity analysis method that identifies a group of dominant parameters that are 
recommended for inclusion in subsequent UQ analyses, as they are the ones that most impact the output 
uncertainty. The results will be displayed so that users can also rank the uncertain parameters visually. 
More methods will be added in the future. 

Scatter plot: The current version supports displaying graphs of a user-specified output against each 
uncertain parameter.  

For details of the statistical theory behind each capability, please refer to the PSUADE Theory Manual 
(Tong, 2009).  
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3.0 UQ Graphical User Interface 
The current CCSI UQ Toolset/GUI requires Matlab 7.11.0 (2010b), PSUADE 1.4 and Python 2.6+. It was 
developed and tested on Linux and Macintosh systems; its compatibility with other platforms has not 
been tested. 

The user interacts with the CCSI UQ Toolset via the associated GUI, which in turn calls the PSUADE 
statistical software to perform sampling and UQ analyses. The GUI is implemented in Matlab and 
PSUADE is implemented in C/C++/Fortran. 

The initial UQ Toolset/GUI is tailored for use with Aspen Plus, in particular for running the MEA process 
models. The tool provides capabilities to communicate with a web-based gateway capable of running 
large numbers of concurrent Aspen Plus simulators. The communication protocols have been 
implemented through Python scripts (by the CCSI Integration Framework Team). Thus, while Python is 
not required for UQ analyses, it is required for any capability involving sample generation, such as 
sample generation or sample refinement. If the user decides to not install Python, he/she can still perform 
UQ analyses with existing data (i.e., sample inputs/outputs) stored in PSUADE format. 

In the following, we show a few snapshots of the CCSI UQ GUI. Details of how to steer through the GUI 
can be found in the UQ Toolset/GUI V1 framework user manual (under preparation). 

3.1  MODEL PREPARATION 
When the user starts up the GUI, the following splash screen will appear. 

 

Figure 3-1: GUI splash screen 

The next screen (cf. Figure 3-2) allows the user to choose from three options. The user can: configure a 
set of samples from scratch, load up a previous configuration for editing, or open a set of previously 
generated samples for execution and/or analysis. In the first two cases, the user may configure samples as 
described in the next section. If the user elects to load a set of pre-generated samples, the user is sent 
directly to the Run/Analysis screen, as described in Section 3.5. 
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Figure 3-2: Configuration/load screen 

 

3.2  SAMPLE CONFIGURATION 
To generate new samples, the user needs to select a model (e.g., MEA). The GUI will then read the 
simulation configuration file and display a tabbed interface that allows the user to configure the samples, 
including selection of inputs and outputs of interest.  

On the inputs tab (cf. Figure 3-3), the user must select the input(s) that he/she wishes to vary. The user 
needs to define a range for each selected input. The user may also specify a probability distribution (such 
as the normal distribution) that effectively characterizes that input’s uncertainty (the distribution is 
uniform by default).   
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Figure 3-3: Input selection screen 

 

On the outputs tab (cf. Figure 3-4), the user must select the output(s) that he/she wishes to analyze. 

 

 

Figure 3-4: Output selection screen 

 

On the sampling method tab (cf. Figure 3-5), the user may also select the sampling method to use for 
generating the input samples, as well as the number of samples to generate. 
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Figure 3-5: Sampling scheme selection screen 

 

3.3  SAMPLE GENERATION 
Once the user has configured the samples to his/her satisfaction, the user may preview the samples or 
immediately start running the simulations. Either way, the GUI will generate a PSUADE file with 
information about the input/output variables and the sampling scheme, then invoke PSUADE to generate 
the input samples. If the user has opted to preview the samples, the screen in Figure 3-6 will appear. This 
screen allows the user to verify that the samples match his/her expectations, and to make any necessary 
modifications to the samples. 
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Figure 3-6: Sample preview screen 

 

3.4  LAUNCHING SIMULATION RUNS 
The user may click “Launch Run” from either one of the sample configuration or sample preview screens. 
This will bring up the Run/Analysis screen in Figure 3-7. At this point, the user may click “Run” to 
actually launch the runs. The GUI will then pass the samples to the Python scripts for submission to the 
gateway. The GUI will monitor progress at the gateway, and as the runs complete, the progress bar will 
change from blue to red. 

The simulations could take a long time, so the GUI provides options for the user to stop and resume the 
simulation runs. If the user stops the runs, the GUI will retrieve the partial results from the completed 
runs. Whether the user allows the runs to complete, or the user stops the runs when they are partially 
completed, the user will still be able to do analysis on the samples that have completed and been retrieved 
by the GUI. 

 

3.5  UQ ANALYSIS 
Once the sample runs are complete or existing samples are loaded, the user will see this screen in which 
he/she can choose a specific UQ method for analysis from the pull-down menu. All capabilities described 
in Section 2 can be selected from this menu. Here, we demonstrate a subset of these capabilities. 
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Figure 3-7: Sample generation progress and UQ method selection screen 

 

Uncertainty Analysis 

The user might be interested in the output uncertainty resulting from the input uncertainties. By choosing 
“Uncertainty Analysis”, one may view the PDF and sample statistics of the selected output variable. 

 

Figure 3-8: Uncertainty analysis results screen 
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Parameter Screening 

The user may also wish to determine which input variables have the most impact on the output variables. 
There are multiple ways to do this. A simple method is to examine the scatter plots of the selected output 
against each of the uncertain parameters. These scatter plots are very useful in understanding the trend of 
the output when the inputs are varied. The inputs with obvious upward/downward trends are important 
while the ones with no trends are relatively unimportant. 

 

Figure 3-9: Scatter plot screen 

Another, more quantitative, way to discern the importance of a specific input is to perform variance-based 
sensitivity analysis. This shows the apportioning of the output variability to individual input parameters 
by percentage. 

 

Figure 3-10: Variance-based sensitivity analysis screen 
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Response Surface Analysis & Visualization 

The user may also find it useful to approximate the input-to-output mapping with a response surface. The 
GUI provides multiple options for response surface generation, including multivariate adaptive regression 
splines and linear/quadratic/cubic regression. (More options will be included in future versions.) To help 
the user decide which response surface model offers the best fit, the user may select “Validate Response 
Surface” for the GUI to display validation plots that show deviations from the response surface’s 
predicted values against the actual values. Here, this specific response surface appears to be a good fit for 
the data. 

 

Figure 3-11: Response surface validation screen 

Once the user is content with the specific choice of response surface, the user can use the GUI to visualize 
the response surface that maps from the most important inputs to a single output. Currently, 1-D, 2-D and 
3-D visualization is supported. Figure 3-12 shows a sample 2-D response surface. 

 

Figure 3-12: Response surface visualization screen 
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4.0 MEA Process Models 
We applied the CCSI UQ Toolset to study the uncertainties in two MEA models provided by the Process 
Synthesis & Design Team. The two models were implemented within Aspen Plus; each represents a 
model of the absorber column with different assumptions on the chemical reactions and mass transfer 
correlations. The first model assumed chemical reactions at equilibrium and used the Billet and Schultes 
correlation (Billet and Schultes, 1993), while the second model assumed a mixture of equilibrium and 
rate-based reactions and used the Hanley structured correlation (Hanley and Chen, 2012). 

4.1  MODEL V1 

Chemical reactions 

There are many chemical reactions that occur within the absorber, the simplest of which are the 
ones in dynamic equilibrium. A chemical reaction in equilibrium is one in which the 
concentrations of the reactants and products have no net change in time. If a reaction is allowed 
time to reach equilibrium, then theoretically the equilibrium concentrations of the reactants and 
products can be measured and combined as a ratio, known as the equilibrium constant. 

For example, in the equilibrium reaction where reactants X and Y react to produce products P 
and Q, and vice versa: 

X + Y ↔ P + Q 

the equilibrium constant is: 

 K =
[P]

p
[Q]

q

[X]
x
[Y ]

y
 

where the exponents x, y, p, and q are orders which depend on the reaction mechanism; and [X] 
represents the concentration of substance X in moles per volume of solution. 

The equilibrium constant is insensitive to initial concentrations of reactants and products, but is 
sensitive to temperature and pressure. However, since the pressure dependence is weak within 
the ranges of pressured deployed in industry, this dependence is often ignored in practice.  

The five equilibrium reactions pertinent to Model V1 are: 

Table 4-1: Equilibrium reactions from Aspen MEA insert 

H2O + MEAH+ ↔ H3O + MEA (Reaction V1-1) 
CO2 + OH- ↔ HCO3

- (Reaction V1-2) 
H2O + HCO3

- ↔ H3O+ + CO3
2- (Reaction V1-3) 

MEACOO- + H2O ↔ MEA + HCO3
- (Reaction V1-4) 

2H2O ↔ H3O+ + OH- (Reaction V1-5) 
 
There exists a relationship between equilibrium constants and temperature: 

lnK = A+
B

T
+C lnT +DT  
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where 

! 

T  is the temperature. Within the Aspen Plus environment, the parameters A, B, C, and D 
are modifiable inputs. The nominal values for these parameters are set to: 

Table 4-2: Equilibrium constant parameters from Aspen MEA insert 

Reaction A B C D 
V1-1 0.7996 -8094.81 0.0 -0.007484 
V1-2 98.566 1353.8 -14.3043 0.0 
V1-3 216.049 -12431.7 -35.4819 0.0 
V1-4 1.282562 -3456.179 0.0 0.0 
V1-5 132.899 -13445.9 -22.4773 0.0 

 
For Model V1, we assumed uncertainty surrounding only the A parameters while keeping all 
other parameters fixed at their nominal values. Our SMEs had recommended that a uniform 
distribution over a +/- 10% interval centered on the nominal value for A.  

Mass transfer correlation 
Another important aspect of the absorber is the model of the distillation column, which contains 
random or structured packings to facilitate the countercurrent contacting of liquid with gas. The 
main variables that affect the performance of these packed columns are: liquid holdup, pressure 
drop, maximum flow capacity, and mass-transfer efficiency. In this study, we focused on the 
mass transfer coefficients and the effective interfacial area, which are parameters that affect the 
mass-transfer efficiency. There are two mass transfer coefficients – one for liquid phase and 
another for vapor phase. Each describes the rate of mass transfer per unit interfacial area per unit 
concentration difference across the contact surface where equilibrium is assumed. 

 

Figure 4-1: Schematic of a packed column 

[Source: separationprocesses.com] 
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Traditionally, the mass-transfer performance of a packed column is described by the packed bed 
height equivalent to a theoretical plate (HETP). The HETP is the height of packing in a 
distillation column that gives a separation equivalent to one theoretical stage, defined as the 
contact process between vapor and liquid such that the exiting vapor and liquid streams are in 
equilibrium. It is given by the expression: 
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where

! 

"  is the stripping factor (i.e., the ratio of the slope of the equilibrium line to that of the 
operating line), 

! 

u
V

 and 

! 

u
L
 are the vapor- and liquid-phase superficial velocities, 

! 

k
V

 and 

! 

k
L
 are 

the vapor- and liquid-phase mass-transfer coefficients, and 

! 

a
e
 is the effective interfacial area 

provided by the packing to enable mass transfer.  

While there are many models of mass-transfer correlations for packed columns1, Model V1 uses 
the Billet and Schultes correlation2 for structured packings: 
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where 

! 

C
L
 is the liquid mass transfer coefficient parameter and 

! 

C
V

 is the vapor mass transfer 
coefficient parameter, both of which are characteristic of the shape and structure of the packing.  

Table 4-3: Terms in the Billet and Schultes correlation 

Terms in 

! 

k
L
 Terms in 

! 

k
V

 Terms in both 

• 

! 

g : gravitational acceleration 
(m/s2) 

• 

! 

"
L
: density of the liquid (kg/m3) 

• 

! 

µ
L
: viscosity of the liquid (kg/m 

s) 
• 

! 

D
L

: diffusivity of the liquid 
(m2/s) 

• 

! 

u
L
: superficial velocity of the 

liquid (m/s) 

• 

! 

" : void fraction of the 
packing 

• 

! 

h
t
: fractional holdup 

• 

! 

D
V

: diffusivity of the vapor 
(m2/s) 

• 

! 

Re
V

: Reynolds number for 
the vapor 

• 

! 

Sc
V

: Schmidt number for the 
vapor 

• 

! 

ap: specific area of the 
packing (m2/m3) 

• 

! 

d
k
: hydraulic diameter (m) 

 

 

For this correlation, we restricted our attention to the mass transfer coefficients,

! 

k
L
 and 

! 

k
V

. Our 
assessment of their uncertainties is from published experimental results in (Billet and Schultes, 

                                                
1 Please refer to (Wang et al., 2005) for a comprehensive review. 
2 Equations taken from Aspen’s documentation on the Billet and Schultes correlation. 
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1993), which indicate a standard deviation of 8.3% for 

! 

k
L
 and a standard deviation of 12.4% for 

! 

k
V

.  

 

Figure 4-2: Experimental data from (Billet & Schultes, 1993) 

 

Since 

! 

C
L
 and 

! 

C
V

 lend themselves as convenient scaling parameters and are modifiable inputs 
within the Aspen Plus environment, we attributed uniform distributions over 

! 

C
L
 and 

! 

C
V

 using 
default Aspen value as the mean and the standard deviations of 8.3% and 12.4%, while holding 
all other terms constant at their nominal values. 

4.2  MODEL V2 

Chemical reactions 

In this model, all reactions are assumed to be in chemical equilibrium except those of CO2 with 
OH- and CO2 with MEA. Each of these rate-based, non-equilibrium reactions is associated with 
a reaction rate, which measures how the speed at which that particular reaction takes place. 

For example, in the forward reaction where reactants X and Y react to produce products P and Q: 

X  + Y → P  + Q 

the rate of reaction r is related to the reactants’ concentrations: 

r = k(T )[X]
x
[Y ]

y   

where k(T) represents the reaction rate coefficient (usually in units of mole m-3 s-1). 
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The reaction rate coefficient k(T) is dependent on the temperature, as quantified by the Arrhenius 
equation: 

k =!e
!
E

RT   

where α is the pre-exponential factor, E is the activation energy and R is the ideal gas constant.  

Let k+ be the reaction rate coefficient for the forward reaction: 

X + Y → P + Q 

and k! be the reaction rate coefficient for the backward reaction: 

P + Q → X + Y  

When the two reactions are in equilibrium: 

X + Y ↔ P + Q 

the rates of the forward and backward reactions are equal: 

k+[X]
x
[Y ]

y
= k![P]

p
[Q]

q  

Moreover, the ratios of reaction rate coefficients is equivalent to the equilibrium constant: 

K =
k+

k!
=
[P]

p
[Q]

q

[X]
x
[Y ]

y
 

The four rate-based reactions in Model V2 are: 

Table 4-4: Kinetic reactions from Aspen MEA-REA insert 

  CO2 + OH- → HCO3
- (Reaction V2-4) 

HCO3
- → CO2 + OH- (Reaction V2-5) 

MEA + CO2
 + H2O → MEACOO- + H3O+ (Reaction V2-6) 

MEACOO- + H3O+ → MEA + CO2
 + H2O (Reaction V2-7) 

 
Within the Aspen Plus environment, each rate-based reaction can be set with customized inputs 
for the pre-exponential factor α and the activation energy E. For our UQ study, we treated α as 
uncertain and kept E at its nominal value.  
 
For Reactions (V2-1) and (V2-2), (Pinsent et al., 1956) reported a maximum error of 11% for the 
reaction rate coefficient k using regressed values for α and E (the same, if not similar, values are 
adopted by Aspen Plus). Thus, assuming k is uncertain +/- 11% around its nominal value, we 
attributed a uniform distribution over a +/- 11% interval centered on the nominal value for α.  
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For Reactions (V2-3) and (V3-4), (Hikita et al., 1977) reported an average deviation of 3.5% for 
the reaction rate coefficient k using regressed values for α and E. Similarly, we attributed α with 
a uniform distribution using the nominal value as the mean and the average deviation of 3.5%. 

As for the equilibrium reactions in Model V2, each reaction’s equilibrium constant is no longer 
parametrized by {A, B, C, D} as in Model V1. Instead, it is parametrized by the “temperature 
approach” ΔT, which is the change in temperature. The van’t Hoff equation relates the change in 
temperature to the change in equilibrium constant, and is frequently used to estimate a new 
equilibrium constant K

2
 at a new absolute temperature T2 = T1 – ΔT: 

ln
K
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whereK
1
is the equilibrium constant at temperatureT

1
,!H " is the standard enthalpy of formation, 

and R is the ideal gas constant. 

The three equilibrium reactions in Model V2 are: 

Table 4-5: Equilibrium reactions from Aspen MEA-REA insert 

H2O + MEAH+ ↔ H3O + MEA (Reaction V2-1) 
H2O + HCO3

- ↔ H3O+ + CO3
2- (Reaction V2-2) 

2H2O ↔ H3O+ + OH- (Reaction V2-3) 

To compute the temperature approach ΔT for each of these reactions, we imposed that K2 is 
within +/- 10% of K1 (this was the same assumption applied to K in Model V1), then computed 
ΔT accordingly using the average temperature in the absorber column as T1. 

 

Mass transfer correlation 
While Model V1 uses the Billet and Schultes correlation, Model V2 uses the Hanley correlation3 
for MELLAPAK/FLEXIPAC sheet metal structured packings: 
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3 Equations taken from (Hanley and Chen, 2012). 
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Table 4-6: Terms in the Hanley correlation 

Terms in  Terms in  Terms in both 

• Re
L

: liquid-phase Reynolds number 

• Sc
L

: liquid-phase Schmidt number 
• c

L
: liquid-phase molar concentration 

(mol/m3) 
• D

L
: liquid-phase binary diffusivity 

(m2/s) 
 

• Re
V

: vapor –phase Reynolds number 

• Sc
V

: vapor –phase Schmidt number 
• c

V
: vapor –phase molar concentration 

(mol/m3) 
• D

V
: vapor-phase binary diffusivity 

(m2/s) 
• ! : corrugation inclination angle (rad) 

• d
e
: equivalent 

diameter (m) 
 

 

Published experimental results in (Hanley and Chen, 2012) indicate a +/- 10% error between the 
predicted HETP values for the correlation and the experimental values.  

 

Figure 4-3: Experimental data from (Hanley and Chen, 2012) 

Unlike the Billet and Schultes correlation from Model V1, there are no parameters that can 
change the values of k

L
 and k

V
 directly. But since the effective interfacial area ae is a modifiable 

input and it scales the effect of k
L

 and k
V

in the HETP: 
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we can indirectly impose a +/- 10% uncertainty on k
L

 and k
V

by attributing a uniform 
distribution over on a +/- 10% interval centered on the nominal value for ae. 
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5.0 UQ Analyses on MEA Process Data 
After having identified the uncertain inputs, we generated samples from each model and applied the UQ 
Toolset/GUI to perform UQ analyses. We repeated this process for three separate cases: 

• Case 1: What is the uncertainty of CO2 capture fraction due to the uncertainties in the input 
parameters (i.e., those involving equilibrium constants and mass transfer)?  

• Case 2: What is the uncertainty of lean solvent flow rate due to the same input uncertainties 
assuming CO2 capture fraction is constrained to be approximately 90%? 

• Case 3: If we consider lean loading as an additional uncertain input, what is the uncertainty of the 
lean solvent flow rate due to the input uncertainties assuming CO2 capture fraction is constrained 
to be approximately 90%? 

These cases were suggested by the SMEs as useful scenarios for understanding how the MEA system 
behaves under uncertainty of the inputs.  

5.1  MODEL V1 
The uncertain inputs for Model V1, along with their uncertainty intervals, are summarized in Table 5-1. 
Each input is attributed a uniform distribution as described in Section 4.1. 

Table 5-1: Input parameters for Model V1 

Inputs Min Max  Case  1 Case 2 Case 3 

A1 0.6942 0.8949  X X X 

A2 98.4606 98.6613  X X X 

A3 215.9436 216.1442  X X X 

A4 1.1772 1.3779  X X X 

A5 132.7936 132.9943  X X X 

CL 1.9694 2.6306  X X X 

CV 0.1727 0.2673  X X X 

Lean Loading 0.1600 0.3500    X 

 

For each case, two sample sets were generated, one using the LPTAU (which is a quasi-Monte Carlo) 
sampling scheme and the other using the Morris sampling scheme. (The Morris sample is used for 
parameter screening.) Table 5-2 summarizes the sample size for each case, where “M/N” means that only 
M samples were successful out of the N samples that were provided to the Aspen Plus server. Thus, the 
subsequent UQ analyses were performed on the M samples. 
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Table 5-2: Sample size of Model V1 simulation data 

Sample scheme Case  1 Case 2 Case 3 

LPTAU 989/1000 998/1000 754/1000 

MOAT 160/160 160/160 106/180 

 

Case 1 

With the specified input ranges (cf. Table 5-1), we found that the output, which is CO2 capture fraction, 
follows the probability distribution (and corresponding cumulative density function) shown in Figure 5-1.  

 

Figure 5-1: Output PDF and CDF from forward uncertainty analysis for Model V1, Case 1 

Next, we tried to fit a response surface to approximate the input-to-output mapping from Model V1’s 
simulation data. The UQ Toolset provides a suite of response surface models, along with validation tools 
for one to examine the goodness-of-fit. Of the multiple response surface models, splines appear to provide 
an adequate fit for the input-output mapping. An adequate fit is signified by an error histogram with 
values close to 0 (left) and a near-diagonal line in the actual vs. predicted data plot (right), as shown in 
Figure 5-2. 
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Figure 5-2: Validation plots from response surface analysis for Model V1, Case 1 

 

Next, we used the validated response surface to perform variance-based sensitivity analysis to identify the 
most important parameters. We found that the three most sensitive input parameters are A1, A2 and A3. 
We used the response surface visualization capability to plot the response surface that approximates the 
mapping from (A1, A2, A3) to the CO2 capture fraction. Figure 5-3 shows the 3-D response surface that 
displays the (A1, A2, A3) space (the colored region) that would achieve approximately 90% CO2 capture 
fraction.  

 

Figure 5-3: 3-D response surface visualization for Model V1, Case 1 
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Case 2 

For Case 2, Model V1 was run with the user-specified constraint of approximately 90% CO2 capture 
fraction. To satisfy this constraint, the Aspen Plus environment internally optimized the model 
parameters. Given the same input uncertainties specified in Table 5-1, the lean solvent flow rate follows 
the probability distribution shown in Figure 5-4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4: Output PDF from forward uncertainty analysis for Model V1, Case 2 

 

Applying variance-based sensitivity analysis, the impact of each input on the output (i.e., lean solvent 
flow rate) is displayed as a pie chart in Figure 5-5. Here, the most sensitive inputs are identified to be A1, 
A2 and A5. The pie chart shows how much each input parameter contributes to the output variance. 

 

Figure 5-5: Pie chart from sensitivity analysis for Model V1, Case 2 
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Parameter sensitivities can also be assessed visually as scatter plots, as in Figure 5-6. A sensitive input 
would exhibit a clear upward or downward trend in its scatter plot. Here, we observe such a trend for A1, 
A2 and A5. 

 

Figure 5-6: Scatter plots from sensitivity analysis for Model V1, Case 2 

  

Case 3 

For Case 3, the process model was run with the same settings as in Case 2, with the addition of lean 
loading as an extra input parameter. Given the input uncertainties specified in Table 5-1, the lean solvent 
flow rate follows the probability distribution shown in Figure 5-7.  

 

Figure 5-7: Output PDF from forward uncertainty analysis for Model V1, Case 3 
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Comparing Figure 5-7 to Figure 5-4, one can see that the inclusion of lean loading as an extra uncertain 
input had drastically made the output (i.e., lean solvent flow rate) more uncertain. This is confirmed by 
parameter screening, also known as variable selection, in which the lean solvent flow rate (shown as 
Variable 8 in Figure 5-7) is ranked the highest compared to the other inputs. This figure is generated 
using the Morris parameter screening analysis.  

 

Figure 5-8: Bootstrap modified means plot from parameter screening for Model V1, Case 3 

Lastly, we assumed that the lean solvent flow rate was observed and its measured value is 4.3244e6 with 
standard deviation of 1e5. (This is a manufactured observation datum to demonstrate Bayesian inference.) 
We performed inverse uncertainty analysis to infer the input uncertainties that could have resulted in such 
an observation. The PDFs (also referred to as posterior distributions) of the uncertain inputs are shown in 
Figure 5-9. Note that before the observation, the lean loading was assumed to be within the range [0.16, 
0.35]. After the observation, the lean loading is now shown to be within a much narrower range, which 
shows that the observation of lean solvent flow rate drastically reduced the uncertainty about the lean 
loading. This agrees with the other UQ analyses that confirm that there is tight coupling between the lean 
loading and the lean solvent flow rate. 

 

Figure 5-9: Input posteriors from Bayesian inference for Model V1, Case 3 
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5.2  MODEL V2 
The uncertain inputs for Model V2, along with their uncertainty intervals, are summarized in Table 5-3. 
Each input is attributed a uniform distribution as described in Section 4.2. 

Table 5-3: Input parameters for Model V2 

Inputs Min Max  Case  1 Case 2 Case 3 

α4 3.8448e13 4.7952e13  X X X 

α5 2.1182e17 2.6418e17  X X X 

α6 9.0861e10 1.0453e11  X X X 

α7 3.2399e19 3.2300e19  X X X 

ΔT
1
 -3.2921e-01 2.9904e-01  X X X 

ΔT
2
 -4.7760e-01 4.3465e-01  X X X 

ΔT
3
 Not enough info; currently omitted 

from study 
    

ae 9.000e-01 1.100e00  X X X 

Lean Loading 2.200e-01 3.000e-01    X 

 

For each case, one LPTAU sample set was generated. Table 5-4 summarizes the sample size for each 
case, where “M/N” means that only M samples were successful out of the N samples that were provided 
to the Aspen Plus server. Thus, the subsequent UQ analyses were performed on the M samples. 

Table 5-4: Sample size of Model V2 simulation data 

Sample scheme Case  1 Case 2 Case 3 

LPTAU 9992/10000 10000/10000 9375/10000 
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We had chosen to use such a large sample size in order to help test the robustness of the interface 
developed by the Integration Framework Team. Such a large sample size is not necessary and the same 
UQ analyses could be performed on a smaller sample. 

Case 1 

With the prescribed input uncertainty ranges (cf. Table 5-3), we observe that the output, which is CO2 
capture fraction, follows the probability distribution (and corresponding cumulative density function) 
shown in Figure 5-10.  

 

Figure 5-10: Output PDF and CDF from forward uncertainty analysis for Model V2, Case 1 

Next, we performed a response surface analysis to approximate the input-to-output mapping from Model 
V2’s simulation data for Case 1. Figure 5-11 shows a comparison between a linear response model (right) 
with a quadratic response model. Here, a diagonal line on the right plot means that the response model 
interpolates well and is an adequate approximation for the input-to-output mapping. In addition, one can 
also examine the coefficient of determination R2, which represents the proportion of variability in a data 
set that is accounted for by the fitted model. Here, the closer R2 is to 1, the better the regression fits the 
data. In Figure 5-11, the left plot shows the linear response model with R2  = 0.997, and the right plot 
shows the (superior) quadratic response model with R2 close to 1. 

 

 

Figure 5-11: Validation plots from response surface analysis for Model V2, Case 1 
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We the used the validated response surface to perform variance-based sensitivity analysis and identified 
α6 and ae as the two most important inputs, with α6 contributing to 23.4% and ae contributing to 72.7% to 
the overall uncertainty of the CO2 capture fraction. As before, the scatter plots with clear upward or 
downward trends correspond to the inputs that are most sensitive. Figure 5-12 (which labels α6 as “A6” 
and ae as “AE”) confirms that α6 and ae are the two most sensitive inputs. 

 

Figure 5-12: Scatter plots from sensitivity analysis analysis for Model V2, Case 1 

Once we have identified the important input parameters, we can use response surface visualization to plot 
the response surface that approximates the mapping from the important inputs (α6 and ae) to the output 
(CO2 capture fraction). Figure 5-13 shows the 2-D response surface that displays the (α6, ae) space 
(colored region) that would achieve approximately 90% CO2 capture fraction.  

 

Figure 5-13: 2-D response surface visualization for Model V2, Case 1 
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Case 2 

For Case 2, Model V2 was run with the user-specified constraint of approximately 90% CO2 capture 
fraction. To satisfy this constraint, the Aspen Plus environment internally optimized the model 
parameters. Given the same input uncertainties specified in Table 5-3, the lean solvent flow rate was 
observed to follow the probability distribution shown in Figure 5-14. 

 

Figure 5-14: Output PDF and CDF from forward uncertainty analysis for Model V2, Case 2 

Next, we performed a response surface analysis to approximate the input-to-output mapping from Model 
V2’s simulation data for Case 2. Figure 5-15 shows a comparison between a linear response model (left) 
with a quadratic response model (right). Linear regression gives R2  = 0.985, while quadratic regression 
gives a more superior R2 = 0.999. 

 

 

Figure 5-15: Validation plots from response surface analysis for Model V2, Case 2 

Using variance-based sensitivity analysis, we identified α6 and ae as the two most important inputs, with 
α6 contributing to 22.9% and ae contributing to 73.1% to the overall uncertainty of the lean solvent flow 
rate. As before, the scatter plots with clear upward or downward trends correspond to the inputs that are 
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most sensitive. Figure 5-16 (which labels α6 as “A6” and ae as “AE”) confirms that α6 and ae are the two 
most sensitive inputs. 

 

Figure 5-16: Scatter plots from sensitivity analysis analysis for Model V2, Case 2 

Once we have identified the important input parameters, we can use response surface visualization to plot 
the response surface that approximates the mapping from the important inputs (α 6 and ae) to the output 
(lean solvent flow rate), as shown in Figure 5-17. 

 

Figure 5-17: 2-D response surface visualization for Model V2, Case 2 

Case 3 

For Case 3, the process model was run with the same settings as in Case 2, with the addition of lean 
loading as an extra input parameter. Given the input uncertainties specified in Table 5-3, the lean solvent 
flow rate was observed to follow the probability distribution shown in Figure 5-18. Comparing Figure 5-
18 to Figure 5-14, one can see that the inclusion of lean loading as an extra uncertain input had drastically 
made the output (i.e., lean solvent flow rate) more uncertain. 
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Figure 5-18: Output PDF from forward uncertainty analysis for Model V2, Case 3 

Again, we performed a response surface analysis to approximate the input-to-output mapping from Model 
V2’s simulation data for Case 3. Figure 5-19 shows a comparison between a cubic response model (right) 
with a multivariate splines response model. Here, a diagonal line means that the response model 
interpolates well and is an adequate approximation for the input-to-output mapping. Both response 
models’ performance degrades drastically when the lean solvent flow rate is greater than 5.5. The reason 
for this degradation is due to the lack of data for this range of lean solvent flow rate, which might be 
attributed to the fact that, under the constraint of approximately 90% CO2 capture fraction, it is difficult to 
obtain valid simulation runs given the specified input uncertainties. 

 

Figure 5-19: Validation plots from response surface analysis for Model V2, Case 3 

Lastly, we performed variance-based sensitivity analysis and lean loading as the most important input, 
contributing to 95.7% to the overall uncertainty of the lean solvent flow rate. As before, the scatter plots 
with clear upward or downward trends correspond to the inputs that are most sensitive. Figure 5-20 
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confirms that lean loading is the most sensitive input. Moreover, it also explains why the inclusion of lean 
loading as an extra input led to such drastic changes in the output PDF. 

 

Figure 5-20: Scatter plots from sensitivity analysis analysis for Model V2, Case 3 

Once we have identified the important input parameters, we can use response surface visualization to plot 
the response surface that approximates the mapping from lean loading to the lean solvent flow rate, as 
shown in Figure 5-21. 

 

Figure 5-21: 1-D response surface visualization for Model V2, Case 3 
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6.0 Summary & Future Work 
In Year 1 of the current CCSI project, we have made good progress in understanding the uncertainties 
associated with some carbon capture models (in this case, MEA) as well as in developing an initial set of 
capabilities for UQ analysis, which comprises several UQ techniques such as parameter screening, 
response surface analysis, quantitative sensitivity analysis and parameter estimation. In addition, 
partnering with the Integration Framework Team, we have designed and implemented a graphical user 
interface suitable for performing UQ on CCSI models. Our UQ Toolset, along with its graphical user 
interface, has been demonstrated on two MEA models as described in Sections 4 and 5. 

Future work consists of extending the UQ Toolset to include additional capabilities to deal with more 
complex carbon capture process and CFD models, and demonstrating the toolset on these more complex 
models. We will also address the challenge of performing on scaled-up systems where no experimental 
data are available. Additionally, in collaboration with the Integration Framework Team, work is underway 
to improve the userability of the graphical user interface. We are currently eliciting feedback from user 
studies and enhancing the presentation of the UQ workflow to the user to make the analysis process more 
intuitive and seamless.
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8.0 Glossary 

Acronym Descriptive Name 

ARRA American Recovery and Reinvestment Act of 2009 

CCSI Carbon Capture Simulation Initiative 

CDF Cumulative Distribution Function 

CO2 Carbon Dioxide  

D Dimension (For example: 3-D visualization) 

FWP Field Work Proposal 

GUI Graphical User Interface 

HETP Height Equivalent to a Theoretical Plate 

ICP Industrially-relevant Challenge Problem(s) 

LANL Los Alamos National Laboratory 

LBNL Lawrence Berkeley National Laboratory 

LH Latin Hypercube 

LLNL Lawrence Livermore National Laboratory 

MEA Monoethanolamine 

MC Monte Carlo 

MCMC Markov Chain Monte Carlo 

NETL National Energy Technology Laboratory 

OA Orthogonal Array  

PC Pulverized Coal 

PDF Probability Density Function 

PNNL Pacific Northwest National Laboratory 

PSUADE Problem Solving Environment for Uncertainty Analysis and Design Exploration 

QMC Quasi-Monte Carlo 

UQ Uncertainty Quantification 

V Version (For example: V1 refers to Version 1) 

 


